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ABSTRACT

Solutions to free and forced oscillations have been found in terms of

an auxiliary set of eigenfunctions. The slosh force and mornent for an arbi-

trary axisymmetric rigid tank at arbitrary Bond number have been derived

for both pitching and translation and expressed in terms of characterist : -s

of an equivalent spring-rnass system. Nur.ierical examples have been con-

strutted which compare favorably with available theories and experiments.
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NO , ATION

a a reference length.	 say, maxims • -n radius of the ullage

E	 dA rdrd9

f	 dA dA/aZ

=	 dS 3-D surface element, e. g.,	 rd9drd

dS dS/a3, nondimensional surface element

F equilibrium (mean) interface or f/a

Fe instantaneous interface

FH horizontal force defined by Eq (19)

FR g, slope of F in the generatrix plane

Fx x - component of force on the tank

f equilibrium (mean) interface elevation

`	 g
e

gravitational acceleration
E

1

t	 H amplitude of h/a, nondimensional slosh. height

h interface perturbation	 +

ho a reference length, 	 say depth of liquid at center of tank

MO P Io rigid niass and moment of inertia of the mechanical model

liquid mass

M y pitching moment about y-axis

mk kth slosh ma_

LN, Rand n.^m ^pr
^^ L

n outer normal

no n/a, nondimensional normal distance
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Op

°ij

Fl

9y

K

K^

^i

`mj

P

I

0

pressure

equilibrium liquid pressure at origin - a constant

ullage pressure

equilibrium ullage pressure at origin - a constant

r/a, nondimensional radius

tank fixed cylindrical coordinates

time

volume of the liquid divided by a3

liquid volume (lower fluid)

wall wett,.1 by liquid

instantaneous wetted wall below instantaneous interface, Fe

translational amplitude in xs-direction

space-fixed rectangular coordinates

-ya, nondimensional hysteresis coefficient

hysteresis coefficient

density difference, p - pu

Kronecker delta

sign of n • 2, cos (n, z), or az
an

amplitude of pitching about y-axis

the mean curvature

perturbation of the mean curvature

jth eigenvalue (m= 1)

jth eigenvalue corresponds to m th circumferential mode

lower fluid density

(

Y

Z

i
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P u	 density of uilage fluid (vapor or gas)

0-	 surface tension

amplitude of nondimensional velocity potential, ^ /waZ

velocity potential of the auxiliary eigenfunctions

amplitude of nondimensional potential Ok/waZ

^DN see Equation (15)

ID° amplitude of the nondimensional potential d '/w°a

velocity potential

d)k	 velocity potential of the k th natural mode

'	 additional velocity potential due to interface movement

d)°
	 velocity potential of liquid with a frozen interface

W	 frequency of oscillation

wk	 kth natural frequency

02	pa3wZ/u-, product of Bond number and frequency parameter

Subscripts

( ) I	 ( ) at the vertex of the equilibrium interlace (origin)

( )^	 ( ) at the contact point in the generatrix plane

( )C. G. ( ) related to center of gravity

( )e	 effective value of ( )

( ),	 ( ) on F

( ) m	 ( ) associated with cos (mO) mude

( ) p	 ( ) related to pitching

)
v
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0

i

( ) T	 ( )	 rela,.ed to translation

( )W	 ( ) on W

( )u	 ( )	 related t.-) the ullage

( )-	 ( ) just below the interface

( )+	 ( ) just above the interface

vi
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INTRODUCTION

The behavior and consequences of fuel sloshing in rockets under a

high effective gravity were recognized problems which have been quite well

understood (Refs. 1, 2, and 3). The problem of low-gravity fuel sloshing,

characterized by the significant role of interfacial tension, is now a subject

of importance for application to coasting rockets or orbital stations.

The equilibrium behavior of fluids at zero and/or low gravity has

been studied in References 4 through 7. The theoretical determination of

an equilibrium interface shape is nonlinear and requires a trial and error

procedure for a given contact angle (Refs. 5 and 6).

Satterlee and Reynolds (Ref. 8) have successfully solved the free

sloshing problem in cylindrical containers under low gravity and forinulat;,d

a variational principle for this purpose. Yeh (Ref. 9), using a similar

approach, solved the free and forced sloshing problem under low-gravity-

conditions, without force and moment or an equivalent mechanical model.

Dodge and Garza (Refs. 10 and 11) performed force measurements under

simulated low-gravity conditions and predicted forces of moment for cir-

cular cylindrical tanks under lateral (translational) motion. The equivalent

spring-mass model was giver_ in Reference 10. Addi tional work by Dodge

and Garza for other special tanks was given in References 12 and 13. A finite

difference approach with application to a hemispherically bottomed cylindrical

tank was given by Concus, Crane, and Satterlee in Reference 14.
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These investigations indicate a need of a program f , r a general

axisymnietric tank. A preliminary study on liquid sloshing in an arbitrary

axirymmetric tank was reported in Reference 15, but it is limited to trans-

lational oscillations. It is the object of the present paper to present a semi-

numerical approach for an arbitrary axisymmetric tank with simplified force

and moment calculations and the resultant mechanical model for both pitching

and translational oscillations. A genera computer program will be com-

pletee to obtain sloshing frequent; , zi, slosh mass, and mass-height, for

which a brief description is given in the Appendix.

Governin gF Eq uations'7

Assuming irrotational incompressible flow, there is a space-fixed

velocity potential ^ satifying the Laplace equation

v2 (^ = C
	

(1)

As in thin airfoil theory, the velocit-- potential can be obtained by imposing

bou .dary conditions on the initial or mean position, but the hydrostatic pres-

sure due tc gravity po::sesses components along both the tank axis z and the

lateral axis x (Fig. 1) for pitching oscillations. The linearized Bernoulli's

equation states

p -pl +p er +Pg(z -x9 ) = 0	 (z)
at	 y

and

P - PuI + Pu at
a(pu + Pug (z - x0y) = 0	 (S)

for the liquid and the ul.lage, respectively, and p I, puI are constants.

a
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Boundary Conditions

The linearized interface kinematic condition states

al̂ L ^^ ^l ^l —+(/-̂-W E	 (4)
at	 an 'V	 ^ar)	

I

where

E 1 = sgn ( n • z)	 (4a)

The interface dynamic condition states

P _ - p+ = OK = QK O + TK'	 (5)

For the "mean" interface location f (in g-3neral, p i = pj + pI, pI, pI being

constants),

a-K+ (p - p u	 ll) gf - ( pI .. e) = 0	 (6)
I

where the curvature of the mean interface, K O , is axisymmetric and

of

K	 _ ] a	 ar	 (6a)

	

0	 r a 
.	 l Tjaflz

^v V,

Equation (6) holds for r = 0, thus

P-° - P'

	

1	 uI arZ I

4

A

I
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The linearized interface dynamic condition is then

- '	 a-0
- (pu - puI) + a-K ' + P a - Pu at + (P - Pu) gh - (P - Pu) gxey = 0	 (7)t

9

where the perturbation curvature for cos (m9) variation

ah

, _ -	 a	 r
K	

1	 ar	 m2	 h	 (7a)
r ar 11 + ( of 1

2	 r2	
1 + raf `2

l	 L	 ^ar/ i	 V	 ^dr/ IJ

m being unity for lateral excitation of a rigid tank. At point I, the origin,

h = 0, ¢ = 0, K' = 0, and thus p i = pu
I

. For most analyses, p u = 0 was

assumed. We shall assume the impulcive pressure in the ullage is negligible,

i.e., 4u = 0. Then for sinusoidal oscillations, Equations (7) and (4) yield

\ - s/2	 - 1/2,
R 8r 

R 
ari 

(1 + F2)-I	 - M
2 z rl + F R l	 + N B H

\	 /	 R \	 /	 e

+ Q Z -D = 0 on F	 (7b)t

The boundary condition on the wall is that the relative normal

axazvelocity be zero, i. e., with cos (r., x) = an and cos (n, z) = 8n

If

5

f

I

i

= z ax
do	 an

t Fo r sinusoidal oscillations and rn = 1, h= 0, Cb = (u =0, x = 0, and K'= 0 at
point I, thus pI - pu = 0. For other m values, pI - pu

I
 = G-r,I, which will ,.)e

I 
omitted until r_eedsd.
tPor siciueoidal oscillations, without loss of generality, :k 0, 0 y ,	 are
assumed to be proportional to sin (wt) while h -is prc-ortional to cos (wt).

n,
%VI



and

^1 = 9 z ax - xaz I
3n	 y	 3n	 3n;

for translational and pitching oscillations, respe_tively.

In addition, there is an interface contact point c.ondition which takes

the form (Refs. 8, 9 and 15!

3h
ar - Th	 at point H	 ii 0)

where y may be a frequency -dependent constant. Hnwever, if the contact

angle remains constant and if the not well-defined second derivative at the

contact point is neglected, we can show that y = 0 (Ref. 15). This value has

been successfully used in References 10, 11, 12, and 13. 	 !
I}

Method of Solution

We shall decompose v into two parts, 4)' and $°: -^° is the velocity

potential corresponding to a liquid contained by a rigid mean interface and

the tank wails. Therefore, it satisfies the Laplace equation and the boundary

condition on the contour, Equation (8) for translation and Equation (9) for

pitching on Fe and We. It is noted that

^T	 Ox
	 (11)

while 10F can be c3nstrucLed numerically. i
i

is the ;• erturhed velocity Potential due to sloshing which is governed 	 {

by the interface conditions and zero normal velocity condition at the wall. i

r

6

(9)
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We shall emplo y a set of auxiliary characteristic functions, wj orthogonal on

the curved interface and vanishing on the walls, instead of constructing natural

modes directly. The natural modes and frequencies are then calculated in

terms of a truncated series satisfy = ng the free sloshing (b° = 0, 9 y = 0) inter-

surface condition by the Galerkin method (Ref. 17).

The velocity potential D' for forced oscillations is then calculated by

expansion into normal modes and the interface condition is again satisfied by

the Galerkin method.

The force and moment are obtained by integration of pressure, not

only on the wall, but also on the interface si._,-e the direct surface tension

fe=ce and moment on the tank is equivalent to those on the interface due to

pressure, assuming the interface inertia is negligible as well as the interface

mass. To put results in the mechanical model forim, the divergence theorem

has peen , — st useful (with some easy manipulations).

Analytical Results

Free Oscillations

For free oscillations, t1he natural mode (^k is expanded into a trun-

cated series of the auxiliary eigenfunctions, i. e. ,

^ jmx

k = 	= I ck `^mj cos (me)	 qj^ _ ^mJ cos (m8)	 (12a, b)

W 	 J= 1	 j

'For direct application of the Winslow method (Ref. 16), we impose the sim p_ ler	 5
normal derivation condition, 8V /8n0 = k^•, on F and used the well-known
influence coefficient technique todetermine	 ^the eigenvector j on the inter-

qsurface, the eigenvalue X j , and j on the wall.

F



F

R

ck_J is the kth eigenvector of the following matrix equation obtained by the

Galerkin method from integrating the nondimensional Equation (7b) with

weighting function Sri

{- I' [vmij ] +['Ymij I +m2 [E mij ) + PN B 
[Pmij) - 02[Amij!l

	

j c j} = 0 i. j = 1 to J inx	 (1 3)

where

mR m= . _	 l	 ^'mfn.,jS = 7.m.b	 (13a):;:
J Q2	 F, 	 J 1J

m.i

E m .. _— I J m
l m J 

d5	 0 3b)
iJ 

a mi F R2 Jl + FR

	

2rr),m.	 E1

V miJ - —Z	 [ R ami `Pn,j ] 1 + F2	
(13c)

ami	 (	 R)II

?.	 -

	

_	 - 3/2 d d^m'	 1 2	 mi _	
FRFRR

7mi j C'2 
	

J [ +FRS	 dR dR d5 + f (1 + F2
1 F	 F

d ^ rni

	

dR 
^mj 

dS	 (L 3d)

8

fin. .+	 1	 J dS
^J ami F 1 + FR

(13e)

*The orthogonality property of ^ j , thus, ^mj can be easily proved (Ref. 15)
as in the high-G case.
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(13f)
r,^m?dS

umi = J
F' 1 + FK

and m= 1 for lateral excitation of a rigid tank.

Forced Oscillations

Let

J
Kmx	 dkO2	 mx, 

m a L dk'	 dk =	 _ z	 -	 ck (bj
k= 1	 ^k	 j= 1	 J

(14a, b, c)

in order to satisfy the interface condition that

K=
L dk (S2 k - Q2),,k 	 2,,0 E, N,3 AP x 0 , =	 ^	 (15)

k= 1	 P a

E, = 0 for translational oscillation, E, = 1 for pitching oscillation.

We have by the Galerkin procedure

Kmx
Z dk f Dk (- HI ) dA = f 4^N (- HI ) dA	 I = 1 to K rnx	 (16)	 t
k=1	 F ti

ak can be solved from Equation (16) by matrix inversion. There is no reed

of storing information of dhj inside the fluid domain as only the force and

moment are of interest. It is noted in the limit (Refs. 8 and 9)

f(D k(- Hj) dA = 6k1 f 00- HI ) dA	 ( 17):;:

F	 F

i4This will be referred to as biorthogonal relation.
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then

dl = J'DN(- HI) dA ^I^p(- H I ) dA

F	 F

which was utilized in proving that a unique spring-niass system exists for

both pitching and t: aslation.

Force and Moment

The force a_id mumellL eXel iCU uy u ---Z- - ...-	 '^*°- (r	 ?I

without damping can be written in the following form (Ref. 18)

FH = F  - MFg6 Y 	 (19)

FH
T

= xO wZ NI F.	 1
CO	 m

+	 k	 21
M 

(20)
k= 1

( w
k- 11

w2

M
yYT

= x wZM h0	 F 0

ao

z r ' G. +	 'nk
- h O	 ^ MF (

zk

\h 

*

0

a 
l

how 2 /

1	 , 1
Z	

\	 (^	 )

k= 1 1J
\ L

F = 8 w2M h ẑ C. G. +	 oo	 mk
F 0

+ a1\ (ZZ)

HP Y  hO
lc 	 1 

MF0
=

hO w2 ^ wZ

W2

M = B w2M h2
Y	 F 0

001 F	 mk ( zk +^- _ a	
2

1
yP M Fh2	 1 M F h0 wZ hO 

I
4k	 \

Cwt -1^
IF z

t

(18)
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t

with rigid mass m0 , its location z 0 , and morrient of inertia I0 gi -en by

00mo	 Mk

MF	 k=1MF

z0 	 1 z C. G.	 m zk	
(25)

rr'k

h0 m0 h0	 k^ 1 h0 MF
MF

_	 2	 cx)^m.	 2 7•rU	 rr	 .,.,
u -V +	 x x	

,

M h 2 M h 2 MF ti,2	 MF h2)	

lGb 

1
M Fh2 MFh2	 0	 0

k=1

Since the force due to liquid pressure, F X, is

F  = f	 p 
an 

dS	 (27)
W e + Fe

and the moment due to liquid pressure M y is

M y = f	 p Cz an - x az dS
	 (28)

We + Fe n)

it can be shown that

Mk = dk I fk V
	

(29)
F

where

00

fk =	 ck. f ^JT1 x d^	 (29a)
J = 1	 1 F-	 a



00

"k = dk	 ck µj
T j= 1	 J

c	
where

tY
(30a)

/z ar x az 1 dS
p a an a an 1

(31 a, b)

c

13

_	 _ 1

s	 GkT (ik W+F

,
1
i

V = VL,/pa3

Jmx

IDk an dS = 12 Z ckj k i f a 
`Pj 

dS
R k = 1	 F

,	 pk = f ( k(-Hk) dA
F

(29b)t

(29c, d)

and

Zk	 k)a -mk`V
	 (30)

MF

µj
_	 z ax_xa?)dS

F+W^^\a an aan

and that

IF = MFa2Ig	 IF = V f
W + F

(30b)

In deriving the mechanical model, p u has been set to zero. A simple modi-

fication can be made for small ullage density by using

N B e = P NB

TFor finite J im, it was found that dk.I., determined by mAtrix inversion of

Equation (16) without using biorthogonal relation. yields results in letter
agreement with Dodge ' s theory (Ref, 12) than E q uAtims (29b) which iK
correct in the limit.

a

t
t
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the effective Bond number instead of the Bond number based on the density

of the liquid, provided that the dynamic pressure due to tillage mo' 4.on is

negligible.

Numerical Examples

The computer program has been checked out by the following examples,

using the cylindrical tank results given in Reference 12 for comparison pur-

poses.

Flat Interface with High Bond Number

14 B = iGGO	 h^ = Z. )ft	 1Z X 18 mesh yielded
a

cola
1. 85 compared with 1. 847 from exact theory (Ref. 1, p 415).

g

ml

M = 0. 193 compared with 0. 194 from high-G theory (Ref. 18).
F

z l = - 0.72 9"^= compared with -0.724" from high-G theory (Ref. 18).

Flat Interface with Low Bond Numbers

h
N B = 10	 a = 2.34	 12 X 18 mesh yielded

wla

= 2. 15 compared with 2. "6 from exact theory.
g

A finer mesh is required for better ^greeinent.

Curved Interface with Low Bond Number and Zero Contact Angle

7.

N B = 100	 a = 2.34	 12 X 18 mesht yielded

*Here, the origin is at the vertex of the meniscus.
t 12 net points on the interface and 18 net points on the "side" wall.
(See Appendix)

E
t



.- . - s _	 -._ . — - - - --w— --. _ -4 - t 	 a	 -. -

2wlaml

	

1.810	 - 0.442	 z _ -0.734" (a = 0.68").
S	 p a3

"la	 ml
compared with theoretical values of 	 = 1.777	 = 0.438

9	 pa3
fro. a Reference 12.

2wla
The experimental value of 	 lies between 1.78 to 1.80.

9
jwa

With a 23 X 34 mesh, the present method yielded 	 = 1.789
g

ml

	

= V."D	 zl = -0.732". Far the 12 X 18 mesh. the
t,a3

CDC -6600 central process time is 2 min, while for the 23 X 34 mesh

it is 21 rein. Most of the computing time was expended for the genera-

tion of influence coefficients, each of which is a Neumann problem.

However, the influence coefficient method may be more convenient

than the inversion of a large matrix if not faster. No computer

running time was reported in Reference 14, which finds natural modes

by (partial) matrix inversion.

15
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r-r..,.-1,,^,-.,

It seems tha , the present method yielded a practical way of computing

the fundamental iatura'i frequency, the first slosh mass, and its location.

Higher masses and locations are usually not needed for design purpc-es and

can be ohtainea by using finer meshes and longer machine time. .A computer

program utilizing triangular meshes and Winslow method (Ref. 16) has been

successfully employed and is expected to be completed in the near future for

the titled problem. However, ti.-. present logical diagram may be limited to

a convex axi • -mmetric tank for good accuracy.
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APPENDIX



BRIEF DESCRIPTION OF A COMPUTER PROGRAM

The following steps of a, computer program are briefly described:

Construction of a Triangular Mesh

The triangular mesh is generated as described in Reference 16 except

a simple parallelogram is used as the logical diagram (Fig, 3). For a

cylindrical tank of Bond number 100, the physical diagram is shown in

Figure 4. The lengths of the edge of the parallelogram can be adjusted for

each individual case to yield ''near'' uniform triangular meshes. A con-

^i uous wall needs to be broken into two parts for the logical diagram. This

only affects the local distribution of the triangular mesh and has shown to

yield equally good results for a half full spherical tank at high-G as well

as a cylindrical tank.

Construction of the Auxiliary Characteristic Functions

TI_ _ L_ _	 r
111C {.,1x61 L^Ci1J l.11. LLLIIC;L1V115 ^ siAls iy

p2 $ = 0	 (A- 1)

4 
=0	 on 

Ono	
(A-Z)

a^ _ 
X(^	 on F'	 (A-3)

Ono

^ can be solved numerically with the constructed triangular mesh by Winslow

method (Ref. 16). Contact point is treated as one of the mesh points as

are the other boundary points. Hence, a± 
may be discontinuous at the contact

point. Zero contact angle cannot be constructed graphically but results of

2)
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Figure 3. A - imple Logical uiagram For Triangular Mesh
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decrease mesh size give closer and closer approximations to the interface

and would probably lead to the correct limiting value.

For an interior joint, ij, (^ = ^i j , (^k = c k(i, j), rk = r k ( ' , A, r = r ij j

6	 2
Z wk(4^k	

m 
Aij^ = 0	 (A-4)

k = 1	 rij

where

Aij is the area of the ij th dodecagon (see Ref. 16)

r id is the radius of the ij th point

1
`''k = Z (>Ikrk cot Hk + Xk - 1 rk - 1 cot a- k)	 k = 1 to 6	 (A-4a)

rk = 3 ( r ij + rk + rk + 1)	 Xk = 1	 (A-4b, c)

9k , T  (see Fig., 3) can be expressed in terms of tk , s k+1 , tk- 1,

s k - 1, and sk-

For interface point,

6 2
wk(Ok-^)-r. Al^^+(8n

J 	 C2 s
3 +^s6 r id =0	 (A-5)

k= 1	 iJ	 \	 1, J L

where

%6=k1 =X2 =0,	 X3=X4=X5= 1 i
i

Note: (Xj _ 1 / 2 ) Ref, 16 = ^j _ 1 , ( Xj + 1/2) Ref, 16 = \j,
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9

To solve for the eigenfunctions on the interface, we use influence coefficient

;method in whirl, (2 )1
	

= 0 except	 ^ I 1 	= 1 for the j th column of the
 / ,i

influence matrix. A standard eigenvalue problem involving only the interface

points, excluding i0 l 1 at r = 0, is needed to obtain the eigenvalues kj and

eigenvectors ^Knowing the j th eigenvector on the intersu.rface, the cor-

responding value of ^j on the wa1). can be easily solved numerically again by

the method of over-relaxation.

For ij th point on the tank wall

6
kW-0- m2Ai • ^ =0 	(A-6)

k = 1	 r ij

)`3 = X4 = )`5 = 0 and k l = 1`2 = k6 = 1 on the bottom wall

%= X 5 = X 6 = 0 and X 1 = X 2 _ X3 = 1 on the s ide wall

On centerline, r = 0,

^=0 for m>1

(A-7)
3 ^-0 for m=C
c'• r

At contact point i = 1, j = j mx-

6	 2

L w k (	 - 	 - r • Aij^ + (2±
an),

,
(2 s3)r1j -0(A-9)

k-1	 >>mx

\ 3 =^4= 1	 P	 \1 =X2=\5 =\6 =0

I
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Calculation of Natural Frequencies, Slosh Masses, and Their Location

The remaining steps are relativel y routine and therefore will not

be described, except it is remarked that trapezoidal rule was employed

conveniently in evaluating the integrals.
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